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The problem of the motion of a piston struck by an expanding gas with 
adiabatic index 11/9 was solved by series by Love [II. 

For any adiabatic index y this problem is reduced herein to the solu- 
tion of an ordinary nonlinear differential equation. 

An exact Bessel function solution of that differential equation is 
obtained for the case y = 1.67 (monatomic gas). 

1. A gas at rest, whose pressure is po, density p,, and speed of sound 

=0* is between two clamped pistons in an infinite tube of constant cross- 
section. The pressure is zero outside the space between the pistons. The 
mass of each piston is 1. The pistons are released at time t = 0. The 
subsequent motion of the pistons under the effect of the gas pressure 
is studied. The gas will be assumed perfect, inviscid and non-conducting. 
The friction of the piston on the tube walls is neglected. 

Let h be a Lagrange coordinate; u(h, t) an Euler coordinate; y the 
adiabatic index. The pistons have the coordinates h = 0 and h = 21; the 
tube cross-sectional area is F. The equation of the gas flow between 
the pistons is 

aat4 au ( 1 -r-1 aau -= 
at= .O’ 7-z -32 (-2Z<h<O) (1-U 

For t = 0 we have the initial conditions 

u (h, 0) = h, s = 0 
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As boundary conditions we have 

where h = 0 

where h = - 21 (1.2) 

Let us introduce nondimensional quanti- 
ties by means of the formulas: 

h z _ (T - i) FPeaa a r=- 
1’ 2ym ts 

(J=--- 
a0 

r- i au 
v= -T&-al’ 

0=f 

T- 1 POFZ T--1m0 

P=-?---=-=-- 7 m 

Let us note that only two nondimensional Fig. 1. 
constants u and y enter into the initial 
data, boundary conditions and equation of 
motion. Here P is defined by the adiabatic 
mass of the gas to the mass of the piston; 
volume 1 6 h < 0. In the new variables the 
x = 0 and z = - 2. The diagram of the flow 

index and the ratio of the 
Q is the mass of gas in the 
pistons have the coordinates 
in the X, T plane is given 

in Fig. 1. As is known, at the initial instant, simple waves proceed 
from the pistons toward each other (the zones ARB and AQD in Fig. 1). 
After meeting, the single waves start to interact (zone ABCD of Fig.1). 
After interaction, the transmitted wave is reflected from the piston 
(zqne BCE of Fig. 1). The wave interaction and reflection from the 
piston are duplicated in the subsequent motion. In the simple wave zone 
the velocity and coordinate of the piston x = 0 are determined from the 
formulas Cl. 21: 

v = j--(1 + 2nq-1/n, 8 = (I -,“; I’,‘- 2nv , T+i 
n = 2 (r - 1) (1.4) 

which are valid up to the instant when wave 
starts (point B in Fig. 1). 

The velocity, time and coordinate of the 

point B are 

reflection from the piston 

piston corresponding to the 

v* = I- (1 + qP? z* =1/z p (2 + 74.4 (I.3 

(.) 
1) (1 + np)% - 2n (1 + np)2-1’n 

* 
= I+ en - 

w 

The problem of simple wave interaction (zone ABCD in Fig. 1) is 
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considered [l-51. A solution for the zone of reflection from the piston 

(BCE in Fig. 1) is given below. Let us intro- 

duce nondimensional Riemann variables by means 
1 
2 of the formulas: 

ae 

v+ ax H 

-(Y-l) / 2 = 2r 
, 

v 
=-2s (1.6) 

Fig. 2. The diagram of the flow in the T, s plane is 

depicted in Fig. 2. The rest zone ARQ is mapped 

in the r, s Plane by the point A(l/Z, l/Z). Simple waves are mapped in 

the r, s plane by the lines AB and AD (Fig. 2). The zone of simple-wave 

interaction is mapped in Fig. 2 by the square ABCD. 

The point B(1/2, l/2 - u*) in Fig. 2 corresponds to the beginning of 

the first reflection from the piston x = 0; the point n(1/2 - tl , l/2) 

is the beginning of the reflection from the piston x = - 2. The*zone of 

reflection of the transmitted wave from the piston .Z = 0 is mapped in 

the r, s plane by the curvilinear triangle BEC. The curve RE will be 

the image of the piston x = 0 in the r, s plane. 

2. Let us show that the number of wave reflections from the piston 

is finite and let us find the upper bound of this number. Let us draw 

the line r - s = v (the segment KB) in Fig. 2. It is seen from the 

sketch that the point K falls on the line r + s = 0 at v = l/3. 

Actually, in this case the point B has the coordinates (i/2, l/6) and 

we have the coordinates of the point K(1/6. -l/6) from the equality 

BC = KC. The curve BE which always lies above the curve KB certainly 

intersects the line r + s = 0 in the zone of the first reflection from 

the piston in this case. But the intersection of the curve mapping the 
piston with the line r + s = 0 denotes the achievement of zero speed of 

sound and zero pressure at the piston. This is only possible in the 

limit as T - 0). Therefore, only one reflection from the piston occurs 

for v > l/3. The characteristic CE in Fig. 1 does not intersect the 

line Z = 0 for Z) > l/3 (the characteristic does not reach the piston). 

The possibility zf such a phenomenon was first noted by Staniukovich 

[21. Expressing tl from (1.5). we obtain the values of v for which only 

one reflection frzm the piston occurs: 

In an analogous manner it is easy to obtain the general formula for 
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the values of ~1 for which not more than k reflections from the piston 

occur: 

3. It was shown [61 that with the exception of the simple-nave zone 
and the zone of constant solutions, the Riemann equation 

a22 
L izl = ar as 

n 
---+-(.$+$+o (3.1) 

is equivalent to equation (1.1). 

The function T(r, s) satisfies an analogous equation and can also be 
determined from the relations 

Let us formulate the boundary conditions for equation (3.1) in the 

square ABCD and the curvilinear triangle BEC (Pig. 2). 

The conditions on the line AB can be obtained from the solution for 
the simple wave (Fig. 1) in the zone ARB. 

From (3.2) we have correspondingly on the characteristic AB 

(3.3) 

Here ~1 is the value of T at the intersection of the characteristic 
with x = 0. Rlimlnating T and using (1.3), we have on AU and AD. 
respectively, (on AD by analogy): 

a2 nx 1 I ax -- n(Z+2)=i 1 -- 

i?S 1/2+s =y-i-a ar r+f/2 p r + 1 / 2 (3m4) 

Solving (3. a), we obtain 

z(s)=- 2 +s (’ )n+$[l-(g-/-s)“] on AB 

~(r)=-2+(r+~)“-$[l-(rf$)n] on AD 

The condition on the curve RE is: 

x (r, 8) = 0 

In the rl s Sariable the piston-motion 

(3.5) 

(3.6) 

(3.7) 

equation (1.2) is 

dv 
- = (r + s)m+’ 
dc 

(3.8) 
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The relation (3.7) is the boundary condition for (3.1) on the unknown 
curve BE. Equation (3.8) is used to find the curve BE. Conditions (3.7) 
and (3.8) can be represented in more symmetric form. We have on BE from 
(3.2), (3. ‘7)) (3.8) : 

Hence, the boundary conditions for x(r, S) on the two intersecting 

characteristics AB and AD (Goursat problem) are given for (3.1) in the 
square ABCD by (3.5). (3.6). The solution of this problem for (3.1) with 
the boundary conditions (3.5). (3.6) is given in [d by the Riemann 
method [61 . The values of z(r, S) on the characteristic BC can be found 

from this solution. Then the values of x(r, S) on the time-similar curve 

BE and the characteristic BC (mixed problem) will be given in the curvi- 
linear triangle REC. The existence and uniqueness of the solution of 
the mixed problem for linear equations was proved by Goursat [71 by 
successive approximations. Hadamard showed that the Riemann method can 

be extended to the mixed problem (see [81 for example). The solution of 
equation (3.1) under conditions (3.7). (3.8) is given in series by Love 
[d. But the numerical computations in that paper are carried out only 
for n = 5, p = 0.04364. Because of the awkwardness of numerical computa- 
tions for other values of p and n no others were carried out. A method 
of solving (3.1) under conditions (3.7), (3.8) based on the use of the 
Green* s formula and the Riemann method is given below. 

If ~[wl is an operator adjoint to LLI, then the following well known 
identity is valid: 

ZM[w]-mL[x]E-c& 5 g+ [( $-)I - $ [W ($ - S)] (3.10) 

Let F(r,,, so) be an arbitrary point on the curve BE. Let us impose 
the conditions 

M [w] = 0, on FC 

on the function w. 

The function 

(s + roJn (r - roll1 
W= 

(r + P 

satisfies conditions (3.11). for example. 

Let us integrate (3.10) over the area of the curvilinear trapezoid 
ABFG and then let us use the Green’s formula and the relations (3. l), 
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(3.7). (3.11): 

.a 

I 1 

au, 

=as 
+-$-)da+ \ w$dr+ \ w($-=)dr=O (3.13) 

AB dP G*A 

Substituting the values of IO and x from (3.4). (3,9) and (3.12 into 

(3.13) and using s = r - V. we obtain the nonlinear integral equation 

2n 

r* 

s (r - v + r~)~ (r - ro)* dv 

II2 
(2r - .)*+I 

drdr=p ~+ro (I 

se (s + ro)* (1 / 2 - rO)n 

-ts (I / 2 + s)m+l 
ds - (1 + 2s~) \ 

‘;O (1 / 2 + roP (r - ro)ndr 

(I / 2 + r)*m+l 

(3 14) 

* 
l/2 I/2 

% = i/2- v*, 1/2-va,<r0<1/2 

Hence, the piston velocity v = ~(7) is determined by using (3.8). 

When n is a positive integer equation (3.14) is reduced by means of 

+ 1 differentiations with respect to re to the non1 inear different ial 

equation 

2n-1 

6 
t 

1 d2”-m 

dm (2r - vy+l 
- 

- n)! (2n - m)! dr2n-m 

(the subscripts on the re are omitted here). The initial data for equa- 

tion (3.15) are determined easily in the process of successive differ- 

entiation of (3.14). Later we shall write them down for the values 

n = 1; 2. If the solution of (3.15) has been found, then the values of 

x, az/ar, &/a s are determined from the relations (3.7)) (3.9) on BE. 

Then we have a Cauchy problem for equation (3.1) in the triangle BEC, 

which can be solved by the Riemann method [61. Later we shall be satis- 

fied with finding the piston velocity v. 

4. For n = 1 (y = 3), equations (3.15). (3.6) have the form 

1 dv+ 2 
r - a)’ dr I pr - v)$ = 0, 

dv 
- = (2r - v)3 
dz (4.1) 

The initial conditions for these equations are 

P 1 
-i+* r=,,2= - 1, x -i_ = ( ) 

pC+2) 
2 (4.2) 

Equation (4.1) is invariant with respect to the two-parameter grouP 

of transformat ions: 

v =a0 + p, r=ar’-t1/2P (4.3) 
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This circumstance affords the possibility of integrating (4.1) in 

elementary functions. Let us present the final result for the piston 
velocity as a function of time 

Staniukovich obtained the solution for this case. by another method 

&!I . 

5. For the case n = 2 (y = I. 67). equations (3.15). (3.8) have the 

form 
(5.1) 

The initial conditions for these equations will be 

1 
* - =I- ( ) dv 

2 If&* ( ) dr r=1/2 = & - 2 
(5.2) 

d% 

( ) dr” r=1/2 
=-ISy’l3-~ - v&+ 12, r(i)=, w-w 

The first equation of (5.1) is invariant with respect to the groups 
(4.3). Hence the order of the equation can be reduced by two. To do 
this let us make the change of variable: 

2r -- v = ee, dv / dr = y, dy / 69, = z (5.3) 

After the change of variable (5.3). we obtain an Abel equation of the 
second kind: 

i2y (1 - y)* + (2 - y) (10~ - 8) z - (2 - y)z¶ + (2 - y)*a dz / dy = 0 (5.4) 

Furthermore, the substitution q = ~(2 - u) yields 

12y (1- Y)* + 2 PY -4)q+&ldy=O (5.5) 

Equation (5.5) has the particular solution q1 = - 2y2 + 2~. After 

substituting p = y + ql, we obtain 

6 (Y- 1) ‘I’ + N’ - 2~ (Y - 111 dJ, / dy = 0 (5.8) 

By the change of variables 
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(5.6) Is reduced to a special Rlccatl equation: 

dq i --- I- 
dE 2’l--E (5.7) 

Equation (5.7) cannot be Integrated in terms of elementary functions 
or quadratures for the given right side (Llouville theorem c93). The 

0.2 
6 

Fig. 3. oU--U 4 

Fig. 4, 

solution of (5.7) expressed In terms of Bessel functions (Schaffii solu- 
tion 193) has the form 

cJ2,s(W + J_,,,(Q 
e(k) = cJ._,,,@) -J,,,(k) ’ 

-#f/a 
e=AT, kzT53/3 c=const (5.8) 

Let E , h denote the values of E and h for r = l/2. Using the 
Initial rka*(5.2) and the transformation formulas relating T, v to the 
variables E. A we obtain 

2 - (1 + 2&-“2 
e* = 12 (1 + 2&-1/z__ 1]1/2 ’ 1, = 

[2 (1 + &)-1’2- l]3/2 

9 + 3 (i + 2+)-l - 6 (1 + 2&-1’2 (5.g) 

The following expression for the arbitrary constant can be found 
from (5.8) and (5.9): 

eJl / 3 (W + J_, , 3 (J-J 
c = O-I, 3 w - J, / 3 (M (5.10) 

Returning to the V, T variables and using (5.2) we obtain the piston 
velocity, the time at the piston and the speed of sound at the piston 
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as a function of h 

A A 

v (A) = v*- s (I (A) e (A) dk, z (A) = Q - 
e (A.) dk 
- 

c+ (U 
A. * 

(5.11) 

A A 

u (A). = uI exp 
LS 

e (A) d?. -I- 2 
s 

dA 

A. 
3 A, h (es + $) I 

(r* = I- v* l5.12) 

From the definitions of II and 8 we have 

d6. 4n- 2 
x=7& 

Let us introduce the notation 

A (11) = CJ, ,8 (1L) + f-, ,3 (1L), A* = A (a,) 

B (A) = cJ_, , 3 (A)- J, , 3 (A) t Be =B (L) 
(5.S) 

From the recursion formulas for the Bessel functions we easily obtain 
[91 

A=-_i_BB-- 
3h dli ’ B=x 

2 0% (5.15) 

Substituting (5.14) into (5.12). we find 
A 

u (A) = u,exp $ +&&+ (5.16) 

Using (5.15). we have 

-$ (A* + B2) = - & k4’ + PI (5.17) 

Let us represent the equality (5.16) in the form 

A . 
u (h) = u* exp I[ 1 

- x -;g+&AIB;Ba -&+$-Id, 

A. 
J 

Hence 

A 

u(A)=u,exp 
1 

,-$f-&-2$~a~$a da 
I 

(5.18) 

Integrating (5.18). taking account of (5.17). we obtain the speed of 
sound at the piston 

’ (‘) = h, (Aaa + Bea) 
A. [Aa (a) + Ba (h)l 

B (A) 
(5.19) 
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In an analogous manner, we obtain from (5. 11) to (5. 15) 
(5.20) 

z (*) = 2, + 5’ (A.’ + B.‘)‘ j_ A @.I B 04 
U,'B*' 2 a* IA’ (I.) + F &)I’ + + 1’ [A’ cn,‘+ b (A)]’ - 

I A.& 3 1 -- -- 
2 L’ (A,’ + 8.3’ 4 I*’ (A,’ + Be’)’ 

0 (A) = i 
2 GJb 

- ’ (‘) - 7 I, (A,’ + B,‘) _ 
4 @. 

B(k)d~=i--(+-~l,(A,‘+B,‘) x 

Lk=O k=o k=a k=o 

8 (A) =e, ++ 3 A. CA,‘+%‘) 1. 
- %) + F 

Q L’ (A,’ + B,Y 
X(0 - 0.) + i&y U,‘B,’ LB, (A,’ + B.3 

Formulas (5.19) and (5.20) afford the possibility of determining the 

piston velocity and the speed of sound at the piston in the first re- 

flection zone. Examples of the numerical computations are given in Figs. 

3 and 4. (The open circles are the ends of the simple waves.) 
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